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1. INTRODUCTION

In anticipation of long~duration, manned space flights, NASA has
been investigating Closed Ecological Life Support Systems (CELSS). The
CELSS would contain a combination of biological, chemical, and mechani-
cal components. It would provide for the crew's nutritional, atmos-
pheric, and waste processing needs. The system is closed to mass but

open to energy. Its goal is the long-term survival of the human crew.

The CELSS can be thought of as containing a replenishing food sup-
ply (usually plants), a waste processor, the human crew, and various
storage tanks. In addition to supplying food for the crew, the plants,
through photosynthesis, remove carbon dioxide and provide oxygen to the

atmosphere. As the humans consume the food, they partially reoxidize it,

using oxygen from the atmosphere and generating carbon dioxide. The

waste from the humans is run through a waste processor, completing the
oxidation that the humans started. In this way, the human/waste proces-
sor components complement the growing food components., The mass flow

follows a loop and the mass is conserved.

After considering this general view of a CELSS, the following ques-
tion was raised: Where might problems develop in system behavior due to
these component relationships? There are three areas of concern. First,
how do the long time delays of plant growth affect the ability to con-
trol the system and insure its survival? Jecond, what are the effects of
nonlinearities on the system behavior? Lastly, does system mass, and its

relation to storage tank capacities, determine the possible system

behaviors?



To address these questions, a series of abstract dynamic models of
a CELSS were developed [2]. They were used to investigate the interac-
tion of long-term dynamics with finite size storage tanks. The variety
of missions a CELSS can be used on increases as the total system mass
and size is reduced [5]. However, the smaller the storage tanks, the
greater the possibility of a tank overflow during a component failure.
The series of CELSS models looks at the dynamic consequences of such a

component failure as a function of tank capacity and control scheme,

Since no CELSS has been constructed, and the models' nonlinear
state equations do not resemble any common engineering system, an inves-
tigation of the abstract models was undertaken. In the simplest model
there are 5 state variables. In addition to nonlinear functions for
plant growth, there are 7 switching functions representing empty and
overflowing storage tanks. While the state space is bounded, the deter-
mination of the existence of equilibrium points is quite time consuming.
This simple 5 dimension system only permits one harvest per growing
time. The more realistic models have multiple harvests in a growing
period, resulting in 8 to 182 state variables. Even in the case of only
8, the traditional approach to locating equilibrium points is not prac-

tical.

To explore all possible behaviors of these systems, a Monte Carlo
search of admissible initial conditions was performed. This uncovered
all possible equilibrium points (and some more complex attracting
regions) and showed a pattern of bifurcations and reverse bifurcations
as the storage tank capacities were varied. The relationship between

system behavior and tank capacity could now be shown.




It is important to be able to tell when one controller is superior
to another from the viewpoint of system survival., Assuming that the
major threat to a CELSS is a component failure, and that a failure moves
the system along a random vector in state space, the best controller is
the one that recovers from the largest variety of failures, This 1is
equivalent to returning the system to the desired equilibrium from the
largest region of the state space. The component failure is viewed as an
event that moves the system away from the desired behavior. It is
assumed that the component can be repaired and that it is then the

controller's job to return the system to its desired operation.

The domain of attraction of an equilibrium point is the region in
state space that is attracted to the equilibrium point. Initial condi-
tions within this region tend toward the equilibrium point asymptoti-
cally. The attractors do not have to be points, they may be limit
cycles, or higher-dimension attractors. The present use of domain of
attraction is of interest only in nonlinear systems because in linear

systems it is trivial, either being the entire state space or null.

The domain of attraction can be refined so that a settling time,
overshoot, or other criteria are included. The resulting region is
called a domain of performance. While the domain of attraction is not
particularly enlightening when used with linear systems, the domain of
performance is useful in investigations of both 1linear and nonlinear

systems.

The control-design goal for the CELSS may be stated as developing
the controller that gives the system the largest domain of attraction

around the desired operating point. If this includes the entire



admissible state space, then system survival is guaranteed for all pos-

sible component failures.

This dissertation explores the characterization and use of the
domain of attraction and its subset, the domain of performance. Investi-
gations of the domain of attraction are performed by Monte Carlo
searches of admissible initial conditions, identifying those that lead
toward the desired equilibrium point (pass) and those that do not
(fail). The resulting pass region can then be measured (total volume,
minimum radius, maximum radius) and a measure of interest can be optim-
ized. This technique is not greatly burdened by high dimensional systems
because a random search is used and the performance measure is a set of

scalars.

It is possible to mathematically calculate the error associated
with the Monte Carlo determination of the domain's volume when the sam-
ple distribution is known. If the domain has a regular shape and low
dimension, the volume can be used to obtain a minimum and maximum
radius, The minimum radius is a reasonable measure of the system's abil-
ity to recover from random perturbations of the state due to a component

failure. The maximum gives some measure of the elongation of the

domain.

For the CELSS models the domain of attraction has an irregular
shape and a high dimension. The constant mass constraint results in a
nonuniform sample distribution of initial conditions that 1is analyti-
cally unknown. Hence, direct mathematical determinations of volume,
minimum radius, and associated errors are impossible. Local densities

are used to obtain volume information from the counts of initial



conditions that are contained in the domain. Similarly, the minimum
radius is found through Monte Carlo simulations and its error is esta-

blished statistically.

In the following chapter, the domain of attraction is compared with
more conventional measures of system stability and performance, Methods
for measuring the domain and its associated error are shown for both
uniform and nonuniform distributions. In Chapter 3, controller design
using the domain as a performance measure is contrasted with more con-
ventional control designs. Finally, in Chapters 4 and 5, these tech-
niques are used to examine the CELSS models' behavior as well as some

properties of CELSS control.



2. THE DOMAIN OF ATTRACTION

2.1 Stability, Performance, and The Domain

A system's equilibrium point (or more complex attractor) is stable
if nearby points approach it in some specified fashion (e.g.: Lyapunov
stable, asymptotically stable, etc.). The domain of attraction is the
entire region about the stable equilibrium point that tends toward it.
In linear systems, a stable equilibrium point attracts the entire state
space. Nonlinear systems may have many attractors, each with their own
domain of attraction. In these cases, both the local and global stabil-

ity properties are important.

Consider a system that has its state perturbed suddenly from a
stable equilibrium, If this 1is a linear system, it will eventually
return to the equilibrium., However, if the system 1is nonlinear, the
perturbed state may be outside the domain of attraction of the original
equilibrium. Then the system would not return to the starting equili-
brium point. Therefore, the size of the domain of attraction in a non-
linear system is a measure of its ability to recover from displacements

in its state.

By including performance criteria, a domain of performance can be
found. This 1is a subset of the domain of attraction. The size of the
domain of performance is an indicator of both linear and nonlinear sys-
tem performance under impulse perturbations of the state., This is
because many performance criteria are inherently nonlinear (such as set-
tling time). Since they do not scale with initial conditions, the

domain of performance may not be global in stable linear systems.



In this dissertation the domains of attraction and performance will

be used to investigate system behavior. In addition, the measures of

the domain will be used as a selection parameter in controller design.

It is very difficult to find necessary and sufficient conditions
for the stability of nonlinear systems. For example, Lyapunov's second
method gives only sufficient conditions., Therefore, the region where
the Lyapunov function exists is a conservative estimate of the domain of
attraction. Since this is only a sufficient condition, it may be possi-

ble to find Lyapunov functions that will approximate the domain of

attraction better.

Lyapunov's first method can also be used to determine the size of
the domain for a nonlinear system [17]. The system is decomposed into
linear and nonlinear parts about the equilibrium point of interest. A
Lyapunov function 1is found for the linear part. The system is locally
asymptotically stable if the gradient along trajectories due to the
linear and nonlinear parts is negative definite, The domain of attrac-
tion is approximated by finding the region where the linear contribution
to the gradient dominates that of the nonlinear part. Since this is
based on the second method, it is only a sufficient condition and the

domain estimate is conservative,

A method for designing controllers and obtaining Lyapunov functions
for nonlinear systems has been presented by Su, Meyer, and Hunt [16].
The nonlinear system is transformed into a canonical linear form, A
controller can then be designed using standard, linear methods. The
equivalent controller for the nonlinear system is found by applying the

inverse transformation to the linear system's control.



A Lyapunov function for the nonlinear system can be made by apply-
ing the inverse transformation to the linear system's Lyapunov function.
Since this function showed global stability of the 1linear system, it
also shows stability over the entire region for which the transformation
applies. Within this region the nonlinear system can recover from state

perturbations,

There are three limitations to this approach. First, the transfor-
mation must be continuous and smooth [7]. A system with switching points
or other discontinuities cannot be transformed into a 1linear system.
Secondly, the transformation and results only apply to a limited region
of the state space. The region can only contain one attractor of the
uncontrolled, nonlinear system. As a result, cases where the controller
greatly increases the domain of attraction cannot be detected. Finally,
a direct measure of the size of the attracting neighborhood is not
obtained; only its lower bounds. This makes selection of control stra-

tegies more difficult.

The technique proposed in this dissertation avoids many of the
usual problems associated with determining the domain of attraction. By
relying on simulation and Monte Carlo selection of initial conditions,
the procedure is relatively insensitive to system dimension, nonlineari=-
ties, and complexity of form. By finding all attractors, all possible
system behaviors are discovered. The domain of attraction about a given
attractor gives a direct measure of the systemn's ability to recover from
state perturbations, Controller design can then be accomplished by
using a Monte Carlo search of control parameters, effectively creating a

nested Monte Carlo program. Performance measures are easily included,




generating a domain of performance that is a subset of the domain of
attraction. It is also easy to deal with questions of robustness

against conditions such as parameter uncertainty or disturbance rejec-

tion,

2.2 Measures of the Domain

The domain of attraction is the set of points in state space that
has trajectories that approach an equilibrium point (or other attractor)
asymptotically [9]. The domain of attraction is also referred to as the
basin of attraction [H4, 10, 14] and the domain of stability [9]. This
region can be mapped out through simulation using randomly selected ini-
tial conditions from the admissible state space. Initial conditions that
are attracted to the given equilibrium are labeled as passes; those that
are not attracted are called fails. In this section, a method for find-
ing equilibria and mathematically calculating the volume of the domain
of attraction will be presented. This applies to both continuous and

discrete systems.
Consider the nonlinear, dynamic system:
x(t) = f(x(t),u(t),z) 2.1

where x(t) is the state vector, u(t) is an input or forcing vector, and
z is a vector of parameters. To perform a simulation of this system,
u(t), z, and an initial condition for x must be specified. While there
are no restrictions on the form of u(t), it is often taken as a function
of x(t), giving the system a closed-loop feedback form. The 2z vector
represents parameters of the system that can be selected during the

design process such as controller gains.
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The equilibrium points are solutions of:

f(x(t),u(t),z) =0 (2.2)

Finding these solutions can be very time consuming if the dimension of
the state vector 1is large or if the function f has many switching
points. Instead of solving for the equilibrium points directly, a simu-
lation approach is used with randomly selected initial conditions of x.
State trajectories are followed until they become (a) stationary within
specified tolerances, (b) 1leave a given region, or (¢) remain in a
bounded volume but do not converge to a point. Case (a) is the result of
a stable equilibrium point. Case (b) occurs when sample initial condi-
tions are within the domain of attraction of a point outside the region
being investigated. Higher dimensional attractors (such as limit cycles)

appear in case (c).

All attractors (equilibrium points, limit cycles, strange attrac-
tors, etc.) can now be found for a given region in the state space. How-
ever, specifying the exact nature of the attractor is not always simple,
For equilibrium points the trajectory comes to rest within a small
volume. Limit cycles repeat their motion and can be recognized by a
repeating pattern of trajectory points. Higher dimensional attractors
are much more difficult to classify. For example, motion on a torus
(which has a finite number of frequencies) and motion on a strange
attractor (which has an infinite number of frequencies) can only be dis-
tinguished through their spectra or with a calculation of Lyapunov
exponents [4, 10], In the examples in this and the following chapter,
only equilibrium points are encountered. More complex attractors occur

in Chapter 5.
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Once the attractors have been found, the domain of attraction for
each may be examined. For simplicity, we will restrict the discussion to
the domain of one attractor. A random selection of initial conditions of
X are grouped into passes and fails depending on whether the trajectory
goes to the attractor of interest. The set of passes indicates the

region of attraction. This region can be analytically measured.

To bring this discussion into clearer focus, consider Figure 1. The
region of interest R (two-dimensional in this case) is the set of

points:
R={(x,y): a<x<b,c<y(<d} (2.3)
The domain of attraction D of point (xo,yo) is:

D = {(x,y): x(t)—)xo, y(t)=y,, as t—oo,and (x,y) €R} (2.4)

A Monte Carlo integration [6, 12] can be used to determine the area
of D. If the initial conditions are uniformly distributed on the region

R, their probability density function is:

1
p(x,y) = To=a) (d-0) (2.5)

The probability P that an initial condition is in D (i.e.: a pass) is:

area D A
® area R - (b-a)(d-¢) (2.6)

If N random initial conditions are generated, we denote the number of

passes (in region D) as Np. P can be estimated by:

- N
P = _&E. v (2.7



y A
d e
R
C e
i 1 =
a b X

Figure 1: The Domain of Attraction of (xo,yo)
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Using equations 2.6 and 2.7, the area of D can be approximated by:

-~ N
area D = A Z A = (b-a)(d-c)-if- (2.8)

Each of the N trials is independent and a binary selection criteria is

used. Therefore, these are Bernoulli trials with probability P of a

~

pass. A is an unbiased estimator of A because:
~ E(N_)
E(A) = (b-a)(d-c)--—ifl- = (b-a) (d-c)P = A (2.9)
The variance of A is:

vard = [ (b=a) (d=c)1° varp = Acf(b-a)(d-c) - A]

N (2.10)
where the variance of P is:
varP = var(N_ 7/ N) = RPQI-P) (2.11)
p N
varp = A<[(b=a) (d=c) -2A]
N-{(b=-a) (d=c)]

The standard deviation of A is:

s.d.(A) = [vara)'/? (2.12)

The precision of the estimate A is proportional to N-1/2.

This technique of estimating area (or volume) and error of the
domain of attraction requires that the initial conditions are uniformly

distributed. In systems where constraints cannot be substituted in

explicitly the wuniformity of sample points cannot be achieved. An

implicit solution for this case is demonstrated in the next section.
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Since the domain indicates the region of initial conditions that
returns to the attractor, the minimum radius of the domain can be used
as a worst-case measure for a system whose state experiences a random
perturbation. This is particularly true when the domain has a complex
shape such as branches off of a central region. If the perturbation
moves the system further from the equilibrium point than the minimum
radius, there is no guarantee that the system is still within the domain

of attraction.

2.3 Example: The Damped Pendulum

A damped pendulum is used to demonstrate some of the techniques for
finding attractors and measuring their domains. The system has many
stable equilibrium points, the domain of attraction about one of which
is examined here. Using a uniform sample of initial conditions, the area
and error calculations of the last section are compared with a more gen-
eral technique. Since the minimum radius is a more versatile measure of
the domain indicating the worst-case system response from a random per-
turbation of the state, a general method of finding it and its associ-
ated error is shown. These techniques are then extended to include the

case where a nonuniform sample distribution is used.

The damped pendulum in Figure 2 is represented by the nonlinear

state equations:

X =y (2.13)

y = =-sin(x) - b-y

where x is angular position, y is angular velocity, and b is the damping

coefficient. Pendulum 1length and mass have been selected to give unity
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The Pendulum

Figure 2:
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coefficients. The value of b is set to 0.5 and a time step of 0.05 Iis
used with a fourth-order Runge-Kutta integration. The sample region of

initial conditions is:

{(x,y): =10 < x < 10, -5 <y < 5} (2.14)

To discover all attractors that can be reached from this region, a
series of simulations can be performed using initial conditions randomly
selected from a uniform distribution. The initial conditions are grouped
according to the equilibrium point that attracts them. A result for 1000
initial conditions is shown in Figure 3. Points in this region are
attracted to 7 stable equilibria. Table 1 gives the distribution of ini-
tial conditions with respect to the attractors, and some representative

trajectories are shown in Figure 4,

The origin is selected as the attractor for the investigation of
the domain of attraction. As a first check of the reliability of the
Monte Carlo integration, Figure 5 shows that the fraction of 1initial
conditions attracted to the origin converges to 31.04%. The total region
sampled has an area of 200. Therefore, using equation 2.8, the area

attracted by the origin is 62,08.

Since the randomly selected initial conditions came from a uniform
distribution, the accuracy of this area calculation can be established
using equation 2.12. Area and error results for a variety of sample
sizes are contained in Table 2. In the standard deviation calculation,

it is assumed that the true area is 62.

In most cases, the domain of attraction is not spherical so its
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Table 1: Size of Pendulum Domains (1000 sample points)

Equilibrium (xo,yo) Number of Points
0,0 309
2%,0 253
-27,0 246
Ug,0 87
-4y, 0 92
6%,0 6
-6, 0 7
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Table 2: Area of Pendulum Origin's Domain of Attraction

Number of Samples Area + Standard Deviation
A +a
100 72, + 9.25
1000 61.8 + 2.93
10000 62.0 + 0.93
100000 62,08 + 0.29
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volume is not a good measure of system recovery from a random distur-
bance. The minimum radius is more appropriate because it reflects the
size of the region where recovery is guaranteed, independent of the
orientation of the disturbance vector. For systems where the perturba-
tion has preferred directions, more detailed geometric information on

the domain may be useful.

It is possible to get an estimate of the pendulum domain's minimum
radius by taking advantage of the domain's regular shape. In Figure 6 a
parallelogram is superposed on the pattern of pass and fail initial con-
ditions. Its height (y direction) is fixed at 10, The area of the

parallelogram is:
A = B-‘H (2.15)

where B is the length of the base (x direction) and H is the height (y

direction). For a fixed height, errors in area result from errors in the

base measurement:

A +a=B‘H +b-H (2.16)
where a and b are the errors in area and base, respectively.

Using the information on domain area and error in Table 2 with
equation 2.16, a table of base length and error can be made. The base
length, however, is not directly a measure of the minimum radius. Using

the geometry in Figure 7 a measure of the minimum radius r of the domain

can be found:

r = El%féé (2.17)



KEY
e pass
O fail
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Domain of Attraction about (0,0) with Superposed Parallelogram

Figure 6:



Figure 7: Geometry of a Parallelogram Domain
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Using the error of the area (Table 2), the minimum radius error can be

calculated:

_ a-cosg

r 2H (2.18)

The minimum radius and error using equations 2.17, 2.18 and Table 2

for 1000 sample points is:
= 1.8 + 0,09 (2.19)
Figure 6 was used to set g to 53 degrees.

The above is an approximate method for finding the minimum radius
relying on the sample distribution being uniform (to find the area) and
the region being somewhat regular (to relate area to minimum radius).
There are two problems with this. First, the domain of attraction is
rarely regular, and second, in higher dimensions a relationship between

area and minimum radius cannot usually be found.

To determine the domain's area, minimum radius, and their associ-
ated errors more directly, the simulation with 1000 uniformly distri-
buted initial conditions was repeated many times with independent sample
sets. The area results of these repetitions were stored. The mean and
standard deviation of the set of area calculations converged before 100
repetitions were completed (a total of 1000 repetitions were performed).

The result for 100 repetitions is:
A = 62,08 + 2,42 (2.20)

where the number of sample points that passed has been converted into an

area (equation 2.8). This area agrees with the Table 2 result for
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100, 000 samples (because this is a 100,000 sample result). The error
agrees with the Table 2 result for 1000 samples. Therefore, the area and
error calculations using equations 2.8 and 2.12 can be duplicated

through repeated simulations of the domain of attraction.

Since the domain's boundary, and therefore its minimum radius, lie
somewhere between the pass and fail points, it is not possible to get a
direct measurement of the minimum radius using Monte Carlo simulations.
However, a first approximation can be found by locating the initial con-
dition nearest the attractor that is not in its domain (i.e. a point
from the fail set). For the pendulum example, this point is shown in
Figure 8 for 1000 randomly selected 1initial conditions. The minimum
radius is the distance from the attractor to the boundary of the domain.
This point, a fail point, is simply the nearest point that is not in the
domain. The uniformity of the sample distribution can be used to infer

the location of the boundary from this point.

For example, 1000 points uniformly distributed on an area of 200
gives an expected area per point of 0.2. If this area is in the shape of
a circle, its radius is 0.25. Assuming the domain's boundary evenly
divides the region between neighboring passes and fails, the boundary

would be 0.25 closer than the nearest fail point.

This approximation of the minimum radius can be refined by replac-
ing the point's area with an ellipse when the region sampled is not a
square, but a rectangle. Assuming the ratio of the semimajor to semimi-
nor axis is 2, the axes measurements for an area of 0.2 would be 0.38
and 0,18, respectively. Using other shapes for the point's area, such as

squares, hexagons, etc. can be justified. Such refinements are ugually
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less significant than the errors associated with the minimum radius
measurement. A more precise refinement of the radius could be obtained

by concentrating sample points near the nearest fail point.

Repeated simulations of 1000 uniformly distributed initial condi-
tions to find the minimum radius (nearest fail point minus the circular

radius about that point) gives:

f = 2.26 + 0,06 (2.21)

(see Figure 8). As before, 100 repetitions were used. While the error
measurement is similar to that in equation 2.19, this radius is notice-
ably larger because the domain is not exactly a parallelogram. Rather,
it has curves on its edges and the minimum radius is at a bulge (see

Figures 6 and 8).

In many systems the state variables have constraints that cannot be
substituted 1in explicitly. Therefore, a uniform distribution of sample
points cannot be achieved and an implicit solution for measuring the
domain is needed. When nonuniform distributions are used, the number of
pass points no longer directly relates to the volume. The volume can be
found, however, if the sample distribution is known and can be inverted
or if the sample point counts are converted to volumes by using the
local density. The minimum radius of the domain of attraction can be
found as it was for the uniform distribution. The only difference |is
that the volume per point, used to infer the boundary location from the

nearest fail point, is now dependent on the local density.

The pendulum example is repeated with the uniform sample distribu-

tion replaced by a transformed sample:
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U (2.22)

where U is a sample from a uniform distribution over the range 0 to 1. V
is a nonuniform sample over the range O to 1. This is used for both x
and y coordinates of the initial conditions. A distribution histogram

for V is skown in Figure 9.

A 1000 point Monte Carlo simulation is shown in Figure 10 using the
nonuniform distribution. Clearly, the fraction of initial conditions
attracted to the origin is not proportional to the domain's volume, How-
ever, if the state space is divided into moderately sized, identical
squares, the initial conditions can be assumed to be uniformly distri-
buted in each. The number of points in each square gives the local den-

sity. Therefore, the area of the domain of attraction is:

K .
A= 3 P22 (2.23)
i=1 i

where (Np)i is the number of pass points and di is the local density of
points 1in square i. The number of squares in the state space is K. The

area of the domain of attraction using equation 2.23 is:

A= 64,12 + 2,44 (2.24)

The nearest fail point is indicated and the local density is 0.25
area units per point. Converting this to a circular radius brings the
domain boundary 0.28 closer than the nearest fail. Repeating this simu-
lation 100 times and storing minimum radii (nearest fail point minus the

circular radius about that point) gives the following measure:

f = 2,34 + 0.06 (2.25)
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IFigure 9:

Nonuniform Distribution Histogram
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These results agree with those obtained from the uniform distribution

(equations 2.20 and 2.21).

The ability to directly calculate an irregular domain's volume, its
minimum radius, and their associated error permits this technique to be
useful for a wide variety of systems., For those where uniform samples
are not possible (such as constant mass systems), the volume determina-
tion requires that the sample counts be converted using local densities,
The minimum radius calculation is virtually unchanged. This means that a
system's ability to recover from state perturbations can be measured
regardless of its dimension, the uniformity of the initial condition

sample set, or the complex shape of the domain of attraction.
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3. CONTROLLER DESIGN USING DOMAIN OF ATTRACTION

3.1 Example: The Inverted Pendulum

An inverted pendulum was chosen to investigate controller design
techniques (see Figure 11). A variety of controllers are then presented
to contrast the usual design techniques with those based on the domain

of attraction.

The pendulum is constrained to motion in a plane. The controller
input is the force applied to the cart at the pendulum's base and the
control goal is to return the cart to the origin with the pendulum
upright. It 1is assumed that all four state variables are available to

the controller.

The full nonlinear state equations for the inverted pendulum are:
Xy = X (3.1)

2_. .
. _m1L(xu) smx3 +F = m gCosX 4 SinXy

2
my + My + MCOS Xg

. 2 .
) l'(m1 + m2)-g-smx3 - mIL(xu) cosxg-sinxy - F cosxy

WL

m1 + m2 + m1cos2x3

where Xy is the cart position, X5 is the cart velocity, x3 is the pendu-
lum position (radians), and X, is the pendulum velocity. Control is

exerted through force F. The acceleration of gravity is represented by
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Figure 11:

The Inverted Pendulum
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g. The following values are used:

m, = 0.1 (3.2)
m, = 1

L =1

g =10

These equations are simulated with a fourth-order Runge-Kutta integra-

tion with a time step of 0.001.

For some traditional controller designs, a linear model of the sys-

tem is needed. Linearizing equation 3.1 about the origin gives:

x1 = x2 (3-3)

In matrix form this would be:
X = Ax + bF (3.4)

where x is the vector of state variables and F is the forcing input.
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The local stability about the origin can be found by examining the

poles (eigenvalues) of equation 3.4 (with F = 0). The poles are:

172

s =0, 0, :[(m1+m2)g / Lm,] (3.5)
Substituting the values of equation 3.2 into 3.5 gives:
s=20,0, 3,32, =3.32 (3.6)

Hence the origin is unstable (a saddle point) when no control is
applied. This is equivalent to saying that without control the origin's
domain of attraction is null. The unstable eigenvalue 1is due to the
upright pendulum. The two O eigenvalues are due to the inertia of the

cart.

A further examination of the linear system shows that it is con-
trollable wusing only F as an input. Therefore, the linear system can be
moved to any point in the state space in a finite time. Also, the sys-
tem 1is observable for output vectors that contain X. In these control
examples the entire state vector is known S0 no state observer |is

needed,

The control goal is to stabilize the nonlinear (and therefore, the
linear) system about the origin and to insure that this design can
recover from the largest class of state perturbations. To show the
effect of a settling time constraint, a performance criteria is set so
that the return to the origin (stationary with the cart at zero and the
pendulum upright) must be within 5 units of time. For investigations of
control behavior, the domain of attraction will be used with the sample

initial conditions from the region:
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{(x1,x2,x3,xu): -10 < x4 < 10, x,=0, (3.7)

-3.14 < x3 < 3.14, "u=°}

This region is selected to be two dimensional (x2 = Xy = 0) for clarity.

A three or four dimensional region could be used.

3.2 Minimum Error Squared Control

A common technique in modern control design 1is optimal control
where a performance measure such as transient time or squared error is
minimized. Optimal controllers that minimize transient time or squared
error for linear systems can be expressed in closed form [17]. For most
nonlinear systems, however, analytic solutions cannot be found. The fol-
lowing controller will be in a linear state feedback form and it is
assumed that the entire state vector is either available or observable.
Since the controller form is specified, this restricted problem is not a
true optimal control. Rather, it is the minimization of a performance

measure by performing a parameter search.

To design a controller for the inverted pendulum that minimizes a
squared error, a Monte Carlo search can be performed on a range of feed-

back gains. The controller has the feedback form:

F = kex (3.8)

The state x is a column vector, the gain k is a row vector, and the

applied force F is a scalar. The error cost function is:

J =4;t (x? + w-xg)dt (3.9

Thus, error accumulates when the cart is not at the origin or the pendu-
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lum is not upright. The weighting factor w adjusts the emphasis between
the two errors. This parameter is part of the controller design and its

value has a strong effect on the resulting gains.

An initial condition of:

x, =5, x,=0, x,=0,2, x, =0 (3.10)

is used to find the control gains that minimize the cost function (equa-
tion 3.9). To 1insure that the pendulum is quickly moved toward the
upright position, a weighting factor of w = 1000 is used. Five hundred
sets of gains were randomly selected from uniform distributions with the

following ranges:

{0 <k

IA
A
x

, £ 100, 0 <k, < 100, (3.11)

N

0 <k 400, 0 < k, < 200}

32 < Ky

The minimum cost function (J

78.1) was obtained with the gain:
k = [15,2, 49,2, 305., 64,U4] (3.12)

This gain was used in a Monte Carlo simulation of 2000 initial condi-
tions randomly sampled from the range 1in equation 3.7. The domain
attracted to the origin in t < 5 is shown in Figure 12, The minimum

radius is:

rperf = 0.35 + 0,06 (3.13)
This region is not the total domain of attraction. There 1is a
larger set of initial conditions that have trajectories that lead to the

origin, Figure 13 shows the stability region for this control. Here, all
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initial conditions get to the origin in t < 20. The minimum radius is:

?stab = 0.81 + 0.03 (3.14)

Figure 14 shows all 2000 initial conditions.

To distinguish between the various regions in the state space, the
following terms are introduced.
Stable set:
Initial conditions that are attracted to the equilibrium point.
Unstable set:
Initial conditions that are not attracted to the equilibrium point
(complement of the stable set).
Pass set:
Initial conditions that satisfy the performance criteria (a subset
of the stable set).
Fail set:
Initial conditions that do not satisfy the performance criteria
(complement of the pass set).
Domain of performance:
Region delineated by the pass set.
Domain of attraction:

Region delineated by the stable set.

Figure 15 shows a typical trajectory from an initial condition in
the stable region. The cart motion does not mcet the settling time cri-
teria. Trajectories in the pass region are similar but have faster
responses, A typical unstable trajectory is shown in Figure 16. The

failure is dramatic. The pendulum starts spinning rapidly and the cart
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2000 Initial Conditions for Minimum Error Squared Control

Figure 14:
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accelerates away from the origin. At this point, the controller is com-

pletely confused by the nonlinearities of the system.

Although this control design minimizes the squared error for a
specifie initial condition, the optimization is very local., This gain
would not be optimal for other initial conditions since the system |is
nonlinear. The design therefore depends on two parameters: the weighting
factor and the initial condition., There is no a priori way of determin-
ing an appropriate choice for them or their effect on the system's glo-
bal behavior. In this case, the optimization of a local region occurred
at the expense of system response from a more global set of initial con-

ditions.

3.3 Minimum Time Control

An alternative cost function for the optimal control design is
minimum time. The previous example showed a very small domain of perfor-
mance but a reasonable size stability region., Hopefully, using time as
the cost function will enlarge the region that passes the time limited
performance criteria. Since the controller form is restricted to linear,
state feedback, this design is not an optimal control. Rather, it is the

minimization of the system settling time given this controller form.

Using a state feedback controller (equation 3.8), the cost function

is now:
J = t: Xg < 0.01; i=1,2,3,4 (3.15)

where t is the time it takes the system to settle to within the toler-

ance band about the origin.



ué

The initial condition in equation 3,10 was used to find the gains
that minimize the cost function J. Five hundred sets of gains were ran-
domly selected from uniform distributions over the range 1in equation

3.11. The minimum cost function (J = 2.86) was obtained with the gain:

k = [48.3, 59.5, 352., 91.0] (3.16)

This gain was used in a Monte Carlo simulation of 2000 initial con-
ditions randomly sampled from the range in equation 3.7. The domain
attracted to the origin in t < 5 is shown in Figure 17. The pass region
is identical to the stability region. In fact, all initial conditions
surpass the performance criteria and arrive at the origin in t < 3.5.

The minimum radius is:

Fperf = ?stab = 0.89 + 0.03 (3.17)

While this control design insured that the selected initial condi-
tion met ‘the performance criteria, it did not generate a domain of per-
formance reaching very far beyond it. The sharp edge of the domain
(t £ 3.5 for attracted points) is a result of the local optimization.
Other initial conditions would generate different results. While this
design meets the performance criteria for a larger set of state pertur-
bations than the minimum squared error design, the consequences of local
design decisions (the initial conditions) on the global result (domain

size) are not easily predicted.

3.4 Pole Placement Control

Pole placement control design permits the manipulation of system
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performance through the selection of closed loop poles. The system model
is linearized so the design is only insured for behavior near the
equilibrium point. The controller is in a state feedback form and it is
assumed that the entire state vector is either available or observable,
For controllable systems, the system/controller poles can be placed

wherever desired.

Using the linearized system described in equations 3.3 and 3.4, the
control is expressed in a state feedback form (equation 3.8). Combining

equations 3.4 and 3.8 gives:

x = (A + bek) x (3.18)

where A is the system matrix and b is a column vector. The poles (eigen-
values) of -equation 3,18 can be placed arbitrarily because the system
(A,b) is controllable [3]. Transforming the system to a control canoni-

cal form aids in finding the gain k that yields the desired poles.

It is difficult to determine which pole locations will satisfy the
system design criteria. The poles are selected in a linear environment
but the system is highly nonlinear. Therefore, the task is to find poles
that will permit the nonlinear system to recover from the largest range

of perturbations with t < 5,

For instance, if the poles are placed at s = -1, =1, <5, =5 the

gain vector is:

k = [2.5, 6, 59.5, 18] (3.19)

Equations 3.8 and 3,19 show that the slow poles (-1) cause a moderate

r2action to cart position and velocity errors while the fast poles (-5)




49
cause a stronger reaction to pendulum position and velocity errors.

Two thousand uniformly distributed initial conditions from the
range 1in equation 3.7 were simulated using the gain in equation 3.19.
The domain of performance (attracted to the origin in t < 5) is shown in
Figure 18. It has a central region and two separated wings. The wings
are isolated from the main body of the attractor by a region that is
stable but does not meet the settling time limit. The total set of ini-

tial conditions is shown in Figure 19.

Given the performance criteria of t < 5, the controller's behavior
can be measured using the pass region. The region's wings and long
extensions along the x axis do not contribute to the system's ability to
recover from random state perturbations. Rather, perturbation recovery

is measured with the minimum radius of the domain of attraction:

P oers = 045 + 0.03 (3.20)

For comparison, the minimum radius of the stability region is:

Fstab = 1.20 + 0.03 (3.21)

To increase the system's ability to recover from perturbations, the
main body of the domain of performance needs to be expanded toward the
wings, filling in the stable region. Since this region was not satisfy-
ing the time constraint, it would seem reasonable to use faster poles to
improve the system behaviur. However, increasing the speed of all the
poles has been found to shrink the region. For example, using poles at s
= -5, =5, =5, -5 gives a performance minimum radius of 0.31 + 0.05,

Through trial and error, it was found that good results were obtained
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when an appropriate mixture of fast and slow poles were used. There |is

no direct method to determine this mixture.

It is generally true in linear systems that faster poles give the
system a larger domain since they imply that the system recovers quickly
from perturbations. As shown above, this is not necessarily true of non-
linear systems. The example with poles at s = -1, -1, =5, =5, recovers
from a larger group of perturbations in t < 5, yet its linear design has
some slower poles than the case with all poles at =5. This is because
the linear approximation only holds for behavior near the equilibrium
point. The domain investigation uses initial conditions far from the
origin; here the nonlinear properties of the system dominate its
behavior. Thus, the decision to use faster or slower poles cannot always

be intuitively based on the linearized behavior.

3.5 Monte Carlo Search For Linear State Feedback Gains

The connection, or map, between the placement of poles in a linear-
ized design and the resulting behavior in the nonlinear system is nonin-
tuitive. The limitation in the use of linear state feedback control on
nonlinear systems 1is in the absence of this map from design parameters

to system performance.

A more direct design approach is used here, The goal remains to
find the 1linear feedback controller gains that enable the system to
recover from the largest set of perturbations. However, instead of look-
ing for linearized system poles or optimal gains for a specific initial
condition, a direct search of controller gains is made using the domain

of performance as the selection filter. This global design method
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searches for systems that can recover from the largest class of state

perturbations.,

The controller has the feedback form of equation 3.8. A range for
each element of the k vector is selected and the elements are set with a
random search using a uniform distribution over the respective ranges.
This gain vector is used in a domain simulation of the nonlinear system
with initial conditions selected randomly from the region of state
space. At the end of each domain simulation, the minimum radius of the
domain of performance is stored and another gain vector is picked. The
largest minimum radius found from this nested Monte Carlo procedure
corresponds to the system that can recover from the largest set of ran-

domly oriented state perturbations.
The gains are randomly selected from the set:

{0 <k, <50, 0

I~
L

< 50, (3.22)

0« k3 <200, 0 < k, < 100}
where each subscripted k is an element of the gain vector. Five hundred

gain vectors were selected and each gain was simulated using 1000 ini-

tial conditions from the range in equation 3.7.
The best gain was found to be:
k = [7.2, 13.2, 103.8, 39.4] (3.23)

Figure 20 shows the domain of performance for this gain using 2000 ini-

tial conditions. The minimum radius is:

Poert = Pstap = 1-20 £ 0.03 (3.24)
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2000 Initial Conditions for Linear Feedback Control

Figure 20:
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The minimum radius of the pass and stability regions are identical.
They differ only where the cart is far from the origin and the pendulum
is leaning in the same direction as the cart displacement. In these
cases, the time to get the pendulum balanced and move the cart back to

the origin is slightly longer than the performance limit,

Using the gain in equation 3.23, the poles of the closed loop sys-
tem (equation 3.18) are at s = -22,.66, -1.02, -1,26+1.22j, where j is
the unit imaginary number. Hence, the best mixture of poles is for one

to be very fast and the other three to be rather slow.

While this design has a larger minimum radius than that found by
trial and error placement of poles or local optimizations, it may not be
the controller with the largest possible domain. The range of gains was
sampled only 500 times. Further sampling could turn up some that would

perform better.

3.6 A Nonlinear Controller

Of the controllers presented in this chapter, the one that
recovered from the largest class of state perturbations was the linear
state feedback using a search over a range of gains. The design did not
depend on parameter selection and the domain of attraction was used to

determine global behavior. A critical limitation, however, exists in the

system's recovery from perturbations in the direction of pendulum angle
(x3). To try to increase the angular range, a nonlinear controller with
nonlinear gain for the angle component of the state feedback will be

used,

The nonlinear controller for the inverted pendulum uses the
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following feedback form:

F o= [kyx, + kyx, + flx3)x5 + kyx),] (3.25)
ayx3: -b < X3 <b
f(x3) = Japxg +cr X32Db
ayx3 - ci x3 £ =b

The nonlinear gain function f is shown in Figure 21,

To reduce the dimension of the gain search, the gains for x1 and x2
are fixed at the values found for the best linear gain in equation 3.23.

The angular gains are from the range:
{0 < a, <300, 0< a, <400, O0<ky < 80} (3.26)

The break point in the nonlinear gain f is set to b = 0.9. The inter-
cept ¢ 1is calculated for each selection of a1 and a2 so that the func-

tion is continuous.

Five hundred gains were randomly selected from a uniform distribu-
tion over the range in equation 3.26. Each was simulated with 1000 ini-
tial conditions distributed over the range in equation 3.7. The system

with the largest domain had gains:

k, =T.2 (3.27)




Figure 21: Nonlinear Control Gain Function
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253.

k

y 43.5

The domain of attraction using 2000 initial conditions is shown in Fig-

ure 22 and the minimum radius is:

rperf = Foiap © 1.32 + 0.03 (3.28)

For this controller, the domain of performance and the domain of attrac-

tion are identical over the sampled range of initial conditions.

While this controller is an improvement over the linear one, it is
probably not optimal. First, the gains on cart position and velocity
could be included in the Monte Carlo search. Secondly, all the gains
could be made nonlinear with adjustable break points. Lastly, a state
space discrete controller, such as those proposed by Young [18], could
be used instead. This control design example was chosen to show that
nonlinear controllers can be designed with the same techniques as linear

ones,

3.7 Summary

In designing controllers for nonlinear systems, the nonlinearity
cannot be ignored. Controllers that are designed with a linear approxi-
mation may or may not be adequate to control the nonlinear system, The
linearized design only guarantees behavior near the equilibrium. While
this is sufficient to determine local stability, it is often inadequate
to evaluate the system's global behavior. Further, controllers that

optimize a local behavior often do so at the expense of global perfor-
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mance, By using the domain of attraction as a selection filter in con-
troller design, the global behavior of the nonlinear system is directly
known. The nested Monte Carlo method permits design of linear and non-
linear controllers that have large domains of attraction and perfor-
mance, The elimination of design parameters, such as weighting factors

or initial conditions, further simplifies the design problem.

A distinction has been made between domain of performance and
domain of attraction. For systems that are initially unstable, domain of
attraction may be sufficient as a performance measure. However, stable
systems, particularly those that are globally attracting, can only be
analyzed with the domain of performance. The only difference is 1in the
goals; the domain of attraction is used to delineate stability and the
domain of performance indicates the region that meets the performance

criteria.

A tabulation of minimum radii for the various controllers presented

in this chapter is found in Table 3.




Table 3: Inverted Pendulum Controller Summary

Controller

>

?perf rstab
Minimum Ervor 0.35 + 0.05 0.81 + 0,03
Minimum Time 0.89 + 0,03 0.89 + 0,03
Pole Placement 0.45 + 0,03 1.20 + 0,03
Linear Search 1.20 + 0.03 1.20 + 0.03
Nonlinear Search 1.32 + 0,03 1.32 + 0.03
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4 THE CELSS MODELS
4.1 Overview

A Closed Ecological Life Support System (CELSS) is wusually con-
ceived as having mass closure but an external supply of energy. It is
possible to model such a system using conservation of mass equations
that describe the storage tank behavior. Flows between tanks can be
treated as controllable variables. Averner [1] wused this approach
.balancing the elemental masses (hydrogen, oxygen, nitrogen, etc.) in the
system, Stahr, et al, [15] developed a model where bulk masses (water,
carbon dioxide, edible food, etc.) are followed through the system. The
latter approach will be used here because it lends itself to examina-
tions of the interplay between storage tank size, system mass, and con-

trol design.

Initial design studies for closed life-support systems concentrate
on the equilibrium requirements for supporting the crew [11], These stu-
dies give some indication of mass and volume requirements by specifying
the flows that will be necessary through various processors, and thus
give some indication of the minimum unit size. However, the life support
system must be capable of maintaining vital functions during temporary
failures of some of its components. Extra storage must be provided, pro-
cessors must have the capability of operating above (or below) their
equilibrium flows, and total amounts of flowing masses in the system
must be specified. This part of the design can only be done by consider-

ing the system's dynamic behavior as none of these parameters enter into

the static equilibrium calculation.
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To examine the dynamic interaction of internal system mass and
storage tank sizes, the model of a CELSS shown in Figure 23 is used.
This abstract model is a simplification of the true complexity of the
system. It does, however, contain some essential components of a CELSS:
constant mass, finite storage tank sizes, and limited processor capaci-

ties.,

To understand the model better, its behavior at steady state is
examined, The crew consumes food at a rate of one unit/day (steady
state) from food storage. With the crop growing to maturity in 60 days,
the 6 plant chambers produce a harvest every 10 days. This harvest must
have an edible mass of 10 units for the system to remain at steady

state.

Under normal conditions, one third of the harvest is edible. The
inedible part is placed in waste storage. As food is consumed, the
crew's waste also goes into this tank. The waste is reoxidized 1in the
waste processor and the resulting nutrients, water, etc., are placed in
the plant chambers. To insure adequate growth for the steady state, the

processor flow must be 3 units/day.

Both food and waste storages have capacities. If a capacity is
exceeded, the tank's output flow must be increased. The waste processor
also has a capacity. If its capacity is exceeded, some of the flow is
bypassed. Clearly overflow conditions can occur given finite storage

tanks and the possibility of a component .failure.

The flows in this model are mixtures of solids, gases and 1liquids.

Thus, the "nutrient" flow refers to nutrients, water, carbon dioxide,
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and other material needed for plant growth. The "harvest" contains
excess water, oxygen, edible and inedible plant matter, and other bpypro-
ducts of plant growth., The proper mixing of the elements is assumed. 1In
this model the plant growth depends only on the rate of the nutrient

flow,

The plants in each chamber are at different stages of growth to
allow harvests at 10-day intervals. As a simplification, an independent
supply of seeds is assumed. The steady state plant growth 1is shown in
Figure 24 (top). This curve follows the general behavior of plant
growth [13]. The plant mass reaches 10% of the harvest mass in the first
20 days from a nutrient flow of 0.1 units/day. The plants grow faster in
the second 20 days reaching S0% of its total mass. So far no edible mass
has grown. In the last 20 days, 2/3 of the nutrient flow goes into edi-

ble growth. Hence, the result is a harvest that is 1/3 edible.

If the nutrient flow into the plant chamber is not at the steady
state two things happen [8]. First, the total plant mass does not
increase as indicated in Figure 24 (top). This effect is due to conser-
vation of mass. Second, if this occurs during the last 20 days of the
growth cycle (when the edible part grows), the percent of the nutrient
flow that becomes edible is affected (Figure 24, center). The nutrient
flow into the 6 chambers is always divided to do the least damage to the

growing plants.

If the waste processor's capacity is exceeded, the bypass flow goes
into the plant chambers (see Figure 23). This overflow accumulates as
"inert matter" in the plant chambers and does not contribute to the

plants' growth. If there is inert matter in the plant chamber during the
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last 20 days (when the edible part of the plant is growing) its growth
is inhibited (see Figure 24, bottom). The inert matter is removed from

the plant chamber during harvest, and is sent to the waste storage.

Control is exerted on the system by adjusting the nutrient flow to
the plant chambers. Flow regulation decisions may be based on a variety
of information about the system. For example, the growth of plants
could be set to compensate for a poor harvest, or the flow of nutrients
could be adjusted to return the waste storage tank to its steady value.
Evaluating the effectiveness of these feedback schemes is critical in
the controller design. This, along with an investigation of the effects

of storage tank size will be covered in the following sections.

4.2 The State Equations

Three versions of the CELSS model were considered: one with three
plant growth chambers, one with six, and the other with twelve,., While
the steady behavior of these three are similar, their differences in
harvest rates and storage tank needs are considerable and have far

reaching consequences.

The three-chamber model looks similar to the one in Figure 23
except for the number of growth chambers., The plant growth curves are
the same as those in Figure 24, It has harvests every 20 days whereas
the six~-chamber version 1is harvested at 10-day intervals. The plant
growth time is 60 days for both. Similarly, the twelve-chamber model has

the same form but is harvested every 5 days.

The CELSS models consist of state equations that represent mass

conservation for storage tanks and the plant growth chambers. The state
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equations are of the form:
() = £(x(t),ult),g(t)) 4. 1)

where x is the vector of masses, u is the control, and g is the vector
used to represent switching functions associated with harvesting and

‘tank capacities,

For example, the food storage state is:

Xfood = qin - qout * g1(xf‘ood’ t) (4.2)

The flow into the tank (qin) is the edible part of the harvest. It is a
delta function because the harvesting 1is periodic. The output flow
(qout) is the required rate of food going to the crew (a continuous
function). The function g1(xfood) is a switching function that is used
to represent an empty or overflowing food tank. The waste storage tank
has a similar state equation except that its switching function g also

contains information on the waste processor capacity.

Each plant chamber has three state equations associated with it.

The first is the mass of the edible part of the plant. It is set to zero

for any chamber associated with the first 40 days of the plant's growth.
During the last 20 days of plant growth the state equation is:

Yedible = 9in"T17f2 * E2(Xeqiprer (8.3

The input flow (an) is the nutrient flow from the waste processor.

Functions f1 and f2 are the edible growth functions represented in Fig-

ure 24 (center and bottom, respectively). f2 is the inert mass state

variable associated with each chamber. The switching function €5
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represents periodic harvesting.

The second state variable for each chamber is the inedible part of

the plant. For plants over 40 days old, it grows by using the nutrient

flow (qin) that is not being used for edible growth:

xinedible = qin.[1 - f1.f2] + g3(xinedib1e’ t) (u.u)

The functions f1 and f2 are the same as for the edible state variable,
The switching function 83 represents periodic harvesting. For chambers
holding plants that are less than 40 days old, the inedible fraction

uses all of the nutrient flow:

Xinedible - %n (4.5)

The third state variable associated with each chamber represents
the inert mass. This is the accumulation of unprocessed waste in the

plant chambers due to the bypass flow. Its state equation is:

Xinert = %in * gU(xinert’ ) (4.6)

where qin is the bypass flow sent to the chamber. Since the inert mass
affects edible growth as an accumulated quantity (see Figure 24, bot-
tom), it is most advantageous to divide the bypass flow evenly between

all plant chambers. The function g represents periodic harvesting.

The total number of state variables depends on the number of plant
chambers. When three are used, there are 9 mass storage variables (1
edible, 3 inedible, 3 inert, 1 food storage, 1 waste storage). For the
six-chamber model there are 16 (2 edible, 6 inedible, 6 inert, 1 food

storage, 1 waste storage). The twelve-chamber model has 30 (4 edible,
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12 inedible, 12 inert, 1 food storage, 1 waste storage). Since the sys-
tem has constant mass, only n-1 of the n mass storage variables can be
independently selected. These are the state variables. The explicit
time dependence of the harvest in the continuous-time system appears as
an added state variable, creating an "augmented state space™ ({17]. This

augmented state vector has dimension n.

The harvesting time interval depends on the number of plant
chambers. With three the interval is 20 days; with six it is 10 days;
and with twelve it is 5 days. The harvest looks like a periodic delta

function.

By sampling the continuous~time system state at the harvesting fre-
quency, a return map (Poincare surface of section) can be made [10].
This map is a discrete-time system where the time dependencies of the
forcing functions are now implicitly included in the formulation. The

system (equation ¥4.1) now appears as:
x(k+1) = x(k) + T‘[fd(x(k),u(k),g(k))] 4. 7)
where k is the time index representing steps of T units,

The continuous-time system function f is now replaced with an
equivalent discrete-time function fd. The key difference in the two is
in how delta functions are treated. In the former case they are
evaluated at the appropriate time. However, with the larger time steps
of the discrete--time simulation, the delta functions need to be approxi-
mated. This is accomplished by evaluating them first in the sequence of
calculations for each time step, In this way the discrete-time simula-

tion generates the same behavior as the continuous one in most
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situations.

One limitation with the discrete-time calculation is that it cannot
properly simulate continuous phenomena as observed in the behavior of
the system during a component failure or tank overflows due to continu-
ous (not delta function) inputs. In the examples that follow, there are
no occurrences of such overflows. But when a component failure occurs,
the continuous-time simulation must be used to follow the system trajec-
tory. The discrete-time simulation can then be used to examine the sub-
sequent evolution of the system once the component is repaired. Thus,
the system's ability to recover from random component failures can be
investigated through simulations of random initial conditions using the

discrete~time calculation.

4.3 Equilibrium Behavior

The three CELSS models described in the previous sections were
designed with a steady state that provides harvests equal to the crew
demand of one unit/day. The relationship between the continuous-time and
discrete-time simulations of these models can be seen by examining the
system behavior at this equilibrium, The three- and six-chamber models
are demonstrated in this section. Similar behavior is observed in the

twelve-chamber model.

Figure 25 shows the three-chamber model operating at steady state.
The continuous simulation's behavior is represented by the plotted line
and the circles are the output of the discrete simulation. Figure 26

shows the equivalent steady state for the six-chamber system.

Each harvest causes a vertical jump in the storage curves while
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continuous output flows cause smooth downward slopes. This sawtooth pat-
tern indicates that the continuous simulation's equilibrium state is not
a point but a cycle. The discrete simulation has a time step equal to
the harvest interval so its output does not show this cyclical behavior.
Its steady state is an equilibrium point. The stability of this steady

state will be examined in the next chapter.

In these examples, the food and waste tanks are never empty. This
buffer level 1is large enough to maintain the output flows for 10 days.
This buffer level can be set wherever desired. However, the survivabil=-
ity of the system to survive failures depends a great deal on the size

and location of these buffers.

The system mass and size of the storage tanks needed depend on the
number of plant chambers the model has., Both the three- and six-chamber
models have food and waste buffers of 10 and 30, respectively. However,
the mass tied up in the plant chambers is not the same., The three~
chamber model has 96 mass units in its plant chambers at steady state
while the six-chamber model has 81 units. Further, the three-chamber
model's larger harvest mass (20 days of food and inedible waste)
requires 1larger food and waste tanks than the six-chamber model does.
With these static considerations, the lighter and smaller six-chamber
system would appear to be a better choice. However, in the next chapter
the dynamic behavior of the two models is compared and the superiority

of the six-chamber system is not as obvious.

4.4 A Processor Failure and the Need For Control

Some of the system dynamics can be seen when a waste processor
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failure is considered. In this example, the supply of water and
nutrients to the plants is stopped from the fifth to the fifteenth day.
During this 10=-day failure the output of the waste storage is set to
zero to avoid a bypass of the processor. From a static design viewpoint
the steady state contains enough food and waste in their respective
buffers to ride out the 10-day processor failure. Control is exerted on
the system through adjustments of the output flow of the waste storage.

All storage tanks are large enough to prevent overflows.

One strategy is to maintain the waste storage output flow at its
steady state value. Using the continuous-time simulation, the effects of
this no-control strategy on a 10-day failure are shown in Figure 27 for
the three-chamber model and in Figure 28 for the six-chamber model. The
system returns to an equilibrium in 60 days. This is not the original
steady state, however. The food buffer of 10 units is gone and the waste
buffer has increased from 30 units to 40, This transfer of mass leaves
the system in a configuration that would be disastrous if another pro-

cessor failure occurred.

In addition to moving to a new steady state, the three-chamber
model needs a waste storage capacity of at least 93 units to absorb the
transient without causing an overflow. For the six-chamber model a waste
capacity of 74.25 1is needed. This dynamic behavior could not be

predicted from the static design.

To return the system to its original steady state with 10 day
buffers, some sort of control action is needed. Figure 29 shows a feed-
back control that adjusts the nutrient flow to the plant chamber. If the

harvest 1is too small, the controller increases the nutrient flow which
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in turn increases plant growth. The gain adjusts the magnitude of the
change in nutrient flow relative to the harvest error, The feedforward

of the set point avoids offset errors in the control.

The feedback controller is expressed mathematically as:

u = 1 + k(1 - y/yset)] (4.8)

usteady

where u is the nutrient flow to the plants and y is the edible harvest,

The proportional gain is k, u is the steady state nutrient flow,

steady
and Yset is the desired edible harvest mass. At each harvest the con-
troller calculates the nutrient flow which is then maintained until the
next harvest. Thus, this is a discrete-time controller. If the control
function results in a nutrient flow large enough to harm the plants, the

controller applies the flow that is at the maximum point of the growth

curve (see Figure 24, center).

This controller is applied to the processor fail example., With a
gain k = 1 the system behavior can be seen in Figures 30 and 31, for the
three- and six-chamber models, respectively. The food and waste buffers
are recovered after the failure, however, the recovery time is between
100 and 120 days. Such a long delay after a failure is due to the system
dynamies. Even though the 1longest time constant in the model is the
plants' 60-day growth time, the system shows evidence of the disturbance
for much 1longer periods. As was the case with the no-control example
(Figures 27 and 28), larger storage tanks are needed to avoid overflows

than is indicated by a static design.
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5 DOMAIN OF ATTRACTION IN CELSS ANALYSIS

The methods of system analysis using the domain of attraction
presented in Chapters 2 and 3 are particularly suited to investigating
many aspects of the CELSS models, Their high dimensionality and non-
linear state equations make them difficult to analyze by any other tech-
nique. The goal is to investigate the dynamic consequences of a change
in the waste storage capacity and the total system mass, as well as how

information is used by the controller,

A random component failure is simulated as a random initial condi-
tion. The size and shape of the region of initial conditions that are
attracted to the specified operating point indicate the system's ability

to recover from random failures.,

Three-, six-, and twelve-chamber models are considered. The waste
processor capacity 1is 4,5 units/day. Waste flows exceeding this amount

are bypassed.

5.1 Uniformity of Sample Points

Since the system has constant mass, the state space 1is bounded.
Therefore, not only can the entire state space be sampled in the selec-
tion of initial conditions, it is also possible to find all attractors
in the system. The constant mass constraint, however, makes it impossi-

ble to get a uniform distribution of initial conditions.

Consider a system with n mass storage variables: x, through x

n

Since the system has constant mass, only n-1 of these are needed to

describe the state. Therefore, it is possible to randomly select the
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first n-1 mass variables, but this fixes the value of xn. Given the

system's mass, it is possible to set bounds on the n state variables:
i=1,2 ...n .1

where Mi is the maximum value for Xge The Mi may be simply set to the
total mass or more refined calculations can be done to set each vari-

ables' maximum.

The set of initial conditions used in the domain of attraction pro-
cedure are found as follows. The variables x1 through xn_1 are set as
random variates uniformly distributed over their respective ranges. The
final state variable 1is found by subtracting the sum of the n-1 vari=-
ables from the total mass. If X, is within its limits, the n state vari-
ables are accepted as members of the set. If the last variable is out of
its range, the entire collection of n variables is discarded. This pro-

cess 1is repeated until the required number of initial conditions are

found.

The mass constraint forces the admissible initial conditions into
nonuniform distributions. Figure 32 shows histograms of the marginal
distribution of the edible and waste storage initial conditions for the
three-chamber model. The six-chamber model is shown in Figure 33. The
other state variables have similar distributions, Few large values are
present because once a large value is selected there is a high probabil-

ity that the total-mass constraint will be exceeded.

Such nonuniform distributions must considered in determining the
domain of attraction's volume and minimum radius. Clearly, the fraction

of initial conditions in the domain is not proportional to the domain's



Fraction

Fraction

8.3

8.2

8.0

8.3

0.2

0.9

84

7| 10 20 30 49
Edible

2 20 40 60

Waste Storage

80

Figure 32: Sample Distribution Histogram; Three-Chamber Model




Fraction

Fracttion

8.20

85

2 5 10 15 2. 25
Edible
e
r—-w
e [ 1
H
%) 18 T 28 2 30 48 59

Waoste Storage

Figure 33: Sample Distribution Histogram; Six-Chamber Model



86

volume. However, if the state space is divided into moderately sized,
identical cubes (actually they are 9-, 16—, or 30-dimensional hypercubes
in these models), the initial conditions can be assumed to be uniformly
distributed in each. The number of points in each cube gives the 1local

density. Therefore, the volume of the domain of attraction is:

K R
Vs 3 —p1 (5.2)

where (Np)i is the number of pass points and di is the local density of

points in cube i. The number of cubes in the state space is K.

Estimating the domain's boundary requires knowledge about the local
point spacing. Its expected value is determined by taking the nth root
of local volume per point for an n-dimensional state space. The minimum
radius 1is the distance to the nearest fail point minus the local point

spacing.

The state space, while bounded, is very large for these two models,
The three-chamber model has a 9-dimensional state space with a volume of
8.9x101u. A 10,000 point sample of 1initial conditions would have an
average spacing of 16.4, The six-chamber model has a 16-dimensional
volume of 3.0x1020; its average point spacing for 10,000 points is 10.7.
The 30-dimension twelve-chamber model has a volume of 8.0x1026 with an
average spacing of 5.8 for a 10,000 point sample. As shown in the dis-

tributions of Figures 32 and 33, the local density and point spacing can

be expected to vary considerably throughout the state space.

5.2 System Behavior and Storage Capacity

The CELSS model behavior is strongly dependent on the selecticn of
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storage tank capacities. Here, variations of the waste tank capacity are
considered. Simulations are made to delineate the domain of attraction
using a random selection of 10,000 initial conditions. These initial
conditions are viewed as the point the system arrived at after a random
component failure. It is assumed that the component has been fixed so
the subsequent model evolution can be followed with the discrete-time
simulation. Proportional control with gain k = ! is used in the examples
that follow (see Figure 29). System mass is set so there is enough for

10-day waste and food buffers.

When the three-chamber model is used with waste storage capacity
larger than 82.4, all 10,000 initial conditions are attracted to the
equilibrium point that generates food at the rate the crew consumes it
(see Figure 25). This steady state is therefore globally attracting and
stable., It should be noted that this attractor is an equilibrium point
only in the discrete-time simulation used here. In a continuous-time
simulation it would be a stable limit cycle. Such a steady state is
called the pass steady state or the pass equilibrium point because a
CELSS operating at this point meets its crew's food and environmental

needs.

When the waste storage tank is smaller than 70, all 10,000 initial
conditions are attracted to equilibrium points that have edible harvests
of zero, Each value for the waste capacity has a corresponding, unique
equilibrium that is globally attracting. All of these points are called

fail points.

In the intermediate range of storage sizes, from 70 to 82.4, both a

pass and a fail equilibrium point coexist. The fraction of the state
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space attracted by each is shown in Figure 34. These volume fractions
have errors of +0.005. As the tank size increases, the region attracted
by the fail equilibrium shrinks while that of the pass increases. For
waste capacities below 70 the pass point is unstable and, for storages
larger than 82.4, the fail point is unstable. Thus, there is a Dbifurca-
tion and reverse bifurcation in the stable points as the waste capacity

is increased. There are no other attractors in the three-chamber system.

One possible design goal is to maximize the domain of attraction
about the pass equilibrium, If this domain covers the entire state space
then the system is able to recover from all perturbations. However, it
is desirable to have a system with small storage tanks and mass, Figure
34 indicates that all initial conditions are attracted when the waste
capacity is 82.U4. A typical, continuous-time trajectory for this system
is shown in Figure 35. here it can be seen there are no edible harvests
for 100 days. Further, it takes the system 240 days to return to the

steady state. This trajectory is stable, but it is not survivable.

A performance criteria can be established such that all pass ini-
tial conditions must settle to the pass equilibrium point in t < 300
days. Figure 36 compares the volume of this performance domain with the
domain of attraction. To meet the performance limit over the entire
state space, a waste storage capacity of 83 1is needed. The minimum
radius as a function of waste storage size for the two domains is ident-
ical (see Figure 37). Thus, the extra volume in the stable region
appears to be far from the equilibrium. Other performance criteria could

be used such as a limited time without food, etc.

An alternative approach to reducing storage capacities is to reduce
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total system mass. For instance, if a 5-day buffer is used in the food
and waste tanks, the total three-chamber system mass is reduced to 116,
The domain sizes for the pass and fail equilibria are shown in Figure
38. As with the 10-day buffer example (Figure 34), there is a bifurca-
tion pattern between the pass and fail attractors. However, the pass
equilibrium is globally attracting for waste capacities above 73.
Therefore, in addition to reducing system mass by 20, the waste storage
can be made 9.6 units smaller without changing the system's stability.
Smaller buffers, however, cause there to be longer transients when food

is not available.

The six-chamber model has all of the same dependencies on storage
capacities and system mass as the three-chamber model, However, it has a
more complicated bifurcation pattern as well as attractors that are not

equilibrium points.

Figure 39 shows the percent of the state space attracted to the
pass and fail -equilibrium points. The pass steady state attracts the
entire space for waste capacities larger than 54, The fail equilibrium
is globally attracting for storages smaller than 43.2. While the waste
capacity needed for the pass domain to cover the entire space is smaller
than that needed in the three-chamber model, many of the initial condi-
tions still take a long time to settle. This is shown in Figure 40 where

the performance domain has a settling time limit of 300 days.

In the intermediate range of waste storage capacity, the equili-
brium points go through a series of bifurcations that create higher-
dimensional attractors. The motion on these attractors 1is bounded and

may be quite complex. For example, Figure 41 shows a trajectory that,
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after an initial transient, becomes periodic. This figure shows the
output of a discrete-time simulation where the output samples have been
connected to form the trajectory. Thus, the edible harvest plot shows
harvest levels oscillating in a repeating pattern. This limit cycle

behavior is globally attracting for a waste capacity of Uu6.

When the waste storage capacity is 53.4, two-thirds of the initial
conditions are attracted to the discrete-time trajectory shown in Figure
42, This motion is called chaotic. It is characterized by trajectories
that never repeat, a continuous spectrum, and a Lyapunov exponent
greater than zero [10]. The first Lyapunov exponent was found to be 0.3.

The chaotic motion takes place on what is called a "strange attractor"

(14].

While it is desirable to use the smallest waste capacity possible,
it 1is not ‘acceptable to go into this region of higher-dimension attrac-
tors. The limit cycle and chaotic motion shown in Figures 41 and 42 are
not survivable because there are long periods with no edible harvest and
no food in the storage. No stable attractors capable of providing a con-

tinuous food supply were found in the six-chamber model, other than the

pass equilibrium point.

In a twelve-chamber model, limit cycle behaviors can be found that
meet the crew's needs. This system has a pass equilibrium point that
provides.harvests of 5 units every 5 days. The total mass with 10-day
food and waste buffers is 113,5, There are 30 state variables in this
model, Figure 43 shows the fraction of the state space attracted to the
equilibrium points and higher-dimension attractors. A waste capacity of

48 guarantees global stability but, as was true in the other models, the
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settling time may be long for come of the initial conditions.

A waste capacity of 37.3 gives a globally attracting cycle (see
Figure U44), There is always a 1 unit per day flow of food to the crew
making this cycle survivable. Further, it attracts the entire state
space with a waste capacity 3maller than that which would support a pass
equilibrium point. Ordinarily, cycles are engineered out of systems
because they wear out components. However, biological systems are not
hurt by constant oscillation; in fact this behavior may be more natural.
Another benefit is that repairs and maintenance can be performed without
disturbing the system every 110 days as the low point in the flow goes

through the component.

This cycle is aperiodic. It has "envelope" and '"carrier" frequen-
cies that do not have a common divisor. The attractor creating this type
of trajectory can be pictured as motion on a torus [10]. However, for

the purposes of insuring that the crew's needs are met, the aperiodic

component of this motion is not significant.

The twelve-chamber model also has chaotic motion. Figure 45 shows
the motion (discrete-~time simulation) on a strange attractor that is
globally attracting at a waste capacity of 37.6. While there are long
periods where the crew's food needs are met, such occurrences are diffi-
cult to predict. It should be noted, however, that there may be strange
attractors that can insure the needed food flow. These would be as
acceptable, from a survival point of view, as the cycle shown in Figure

44, To demonstrate the complexity inherent in a chaotic trajectory, Fig-

ure U6 shows the edible harvests for 13,7 years.
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In summary, changes in waste storage capacity and the number of
plant chambers significantly alters the system's behavior. All three
models show a pattern of bifurcation and reverse bifurcation as the
waste capacity 1is increased. The three-chamber model has only two
equilibrium points while the six- and twelve-chamber models have two
equilibrium points and a collection of higher-dimension attractors. As
the waste capacity is reduced, the settling time of the pass 1initial
conditions increases. In addition to permitting the use of smaller
storage tanks, the six- and twelve-chamber models have oscillating,
stable, globally attracting trajectories. These occur at waste capaci-
ties smaller than those that permit surviving equilibrium point

behavior,

5.3 Information Flow in a CELSS

Since the CELSS system is a closed cycle, it is not apparent what
piece of information will be most useful to a controller. To investi-
gate the effectiveness of different information use, the three-=chamber
model was chosen with a waste capacity of 82. The design goal is to max-
imize the volume and the minimum radius of the domain of attraction of
the pass equilibrium point. The domain is delineated with 10,000 initial

conditions.

In the first example, the waste flow to the processor is set at the
steady state value of 3 units/day. This no-control situation is the
equivalent of an open-loop investigation in traditional process control.
The domain of attraction for this case is 0.056 + 0.005 of the state

space volume. The minimum radius is 1.5 + 1.1,
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A proportional control is added to th2 system. Its general Fform is:

u = {1 + k(1 - y/yset)] (5.3)

usteady

where u is the waste flow to the processor, u is the steady state

steady
processor flow, and k is the proportional gain. The observed variable
is y and the desired value for y is yset' The quality of the control

depends on the selection of the state variable y that is used in the

controller feedback.

Figure U47 shows some possible paths for feedback information flow
in a CELSS. Three feedback configurations are shown, for which domain
of attraction simulations are repeated with 100 proportional gains ran-

domly selected from the range:
0<k<5 (5.4)

The gain that provides the largest minimum radius is the controller for
that feedback system that can recover from the largest set of random

state perturbations.

When the waste flow is set by comparing the 1level in the waste
storage with the steady state, the largest domain of attraction volume
is 0.099 + 0.005 of the state space and its minimum radius is 2.1 + 1.1,
Its gain is k = 0.51. It should be noted that volume fractions from
0.050 to 0.099 can be obtained by using gains in the range from 0 to
1.5. A gain of zero is the no-control situation. Using the waste storage

level as the control input has a marginal effect on the system's ability

to recover from random failures.

The presence of inert matter in the plant chamber reduces edible
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growth (see Figure 2U4). A controller can compensate by increasing the
nutrient flow to the plants, which increases the edible fraction.
Searching the range of gains with this feedback design gives a maximum
domain of attraction volume of 0,180 + 0.005 of the state space. The
minimum radius is 5.2 + 1.1. This control has a larger domain than the
waste=feedback or no-control configurations. Although the gain for this
domain is k = 1.4, there is a wide range of gains that give comparable
results. Volumes from 0,100 to 0,180 are achieved with any gain larger
than k = 0.,5. As the gain gets larger, the controller reaches its max-
imum flow for very small inert masses. Such saturation indicates that

most results above a certain gain will be identical,

The harvest can also be used as input to the controller. Although
this configuration is like the one used in the waste capacity investiga-
tion of the previous section, here the capacity is fixed and the control
gain 1is searched to find the system that recovers from the largest set
of random failures. The largest domain of attraction was found for the
gain k = 1.2, The domain's volume is 0.585 + 0,005 of the state space
and its minimum radius is 18.3 + 1.1. The domain is rather sensitive to
gain. For gains from 1.0 to 1.25 the domain volume fraction is between
0.500 and 0.585. However, there is a sharp drop in domain volume for

gains outside this range.

Global system behavior was slightly improved over the no-control
situation by using the waste storage level or inert mass as the feedback
information. However, a large increase in the domain of attraction was
obtained when harvest information was used. This can be understood by

redrawing the CELSS-in a more conventional process control configura-
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tion., Figure 48 shows the system drawn with forward and backward paths.
Control is exerted on the system by adjusting the waste processor flow.
Using the waste storage level as the control input gives very little
improvement in the size of the domain of attraction. Since this domain
represents stability, it is expected that feedforward control would have
no influence on its size. Hence, making use of the waste storage infor-
mation mimies the traditional behavior of a feedforward path. The inert
mass in the plant chambers provides feedback on the inner mass loop
which gives more system stability. Feedback on the outside mass loop,
using harvests as the control input, does even more to improve the sta-

bility domain.

This analogy with process control helps to explain the effective-
ness of various feedback configurations. It is, however, only a single
input, single output controller investigation. More complex controllers,
such as those that use state feedback, would probably be able to achieve
larger domains of attraction and performance than these output feedback

controls.
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6. SUMMARY

In this dissertation, a technique for analyzing and designing con-
trollers for nonlinear systems based on measures of the domain of
attraction has been presented. These methods are particularly suited to
investigating the dynamic consequences of changes in the waste storage
capacity, the system mass, and how information is used for control in
CELSS models. The models' high-dimensionality and nonlinear state equa-

tions make them difficult to analyze by any other technique.

The domain is the region of initial conditions that asymptotically
approach an attractor. The attractor may be an equilibrium point, a
limit cycle, or other higher-dimension attractors. A refinement of this
region 1is the domain of performance which is the region of initial con-

ditions that meet a performance criteria.

In nonlinear systems, local stability does not insure stability
over a larger region. The domain of attraction marks out this stability
region. In this way, it is a measure of nonlinear system's ability teo
recover from random state perturbations. In linear systems, local sta-
bility guarantees global stability so this concept is not enlightening.
However, the use of a domain of performance as a global measure is use-

ful in both linear and nonlinear systems.

When considering random perturbations, the minimum radius of the
domain is a measure of the magnitude of perturbations for which recovery
is guaranteed. An advantage of this measure 1is that it 1is a vector
length and, therefore, is applicable to systems with any dimension. The

representation of global system performance in a single scalar permits
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easy comparisons of system and controller designs.

The domain of attraction or performance is delineated by randomly
selecting initial conditions from the region of state space being inves-
tigated. If these are from uniform distributions, the number of points
in the domain is proportional to its volume. The minimum radius of the
domain's boundary is found by subtracting the typical point spacing dis-
tance from the nearest initial condition not in the domain. In con-
strained systems, the sample distribution cannot be uniform. The minimum
radius is now found by subtracting the local point spacing distance from
the nearest point not in the domain. By numerically inverting the
nonuniformity of the sample points, the domain volume can be obtained.
Error determinations for the volume and minimum radius are found by

repeating the domain simulations with independent samples.

The use of the domains of attraction and performance were demon-
strated in controller design for an inverted pendulum. This global
design technique was contrasted with more traditional, 1local design
methods. Since the problem is nonlinear, the traditional designs only
insured some sort of local behavior. There is no map between 1local
design decisions and the nonlinear system's global behavior. Thus, it is
not apparent what parameter changes need to be made to improve the glo-

bal performance.

When the domain of attraction or performance is used in the con-
troller design, the global behavior of the system is used as the design
criteria. Consider the case where a controller form is selected and the
gains need to be set, A controller can be designed by randomly selezting

gains, simulating the resulting domains, and using the minimum radius as
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the selection parameter. For the inverted pendulum, this technique was
used to find a linear state-feedback controller that was able to recover
from a larger class of state perturbations than those found by local
techniques. A nonlinear controller was also designed which had larger

domains of attraction and performance than the linear one.

An advantage to this global design technique is that the design
process is automated once the system model is formulated, the region of
state space to be investigated is established, and the form of the con-
troller 1is set. The domain simulations are made from randomly selected
initial conditions over the state space. Each domain simulation results
in a minimum radius representing the system's ability to recover from
random state perturbations. The complexity of the controller has no
effect on this proceés, other than to increase the number of parameters
that need to be set for each domain simulation. The system dimension is

not a problem because the selection is made using a scaler.

The domain of attraction was used in the CELSS examples not only to
find good control gains, but also to investigate system behavior as a
function of system parameters. It was found that the three-chamber model
has only two equilibrium points in the discrete-~time simulation. One
point provides edible harvests that meet the crew's food requirements.
The other has edible harvests that are always zero. The former, surviv-
ing equilibrium is called the pass equilibrium point and the latter one
is called the fail equilibrium..For small waste storage capacities the
fail point is the only attractor. As the waste storage increases this
equilibrium bifurcates into pass and fail stable points, Then there is a

reverse bifurcation leaving only the pass equilibrium point.
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The six- and twelve-chamber models showed a similar bifurcation,
then reverse bifurcation pattern. However, in the intermediate range of
tank capacity, there were also stable, higher-dimension attractors
present. These have bounded trajectories that are 1limit cycles,
aperiodic oscillations, and chaotic motion. While there were no surviv-
able oscillating trajectories found for the six~chamber model, the

twelve-chamber system had survivable behaviors that are cyclical.

An investigation of the effectiveness of using different informa-
tion as controller input showed that the CELSS can be viewed in a pro-
cess control configuration. Here, controls that 1look 1like traditional
feedforward control have no effect on the system stability. Feedback

control, however, improves system stability. In this representation the

multi-loop form of the CELSS becomes apparent.

To achieve the minimum mass and storage capacity in a CELSS, sys-
tems with more frequent harvests are preferred. Less mass is tied up in
the plant chambers and the harvests are small, requiring 1less storage
capacity. However, these systems have a large number of state variables,

Real-time controllers may be burdened by this high-dimensionality.

Smaller waste capacities may be used to force the system into a
cyclical mode. While this is not usually acceptable in mechanical sys-
tems, it appears to have benefit in a CELSS. The waste capacity 1is
reduced while not requiring an increase in the food storage capacity.
Also, by waiting for the low point in the system flow, repairs and

maintenance could be performed without disturbing the system.

The abstract CELSS models presented in this dissertation only give
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a hint of the complexity of dynamic behavior that will be observed in a
real system, Modeling the atmosphere as a separate loop would probably
create new system behaviors due to the interaction of the gaseous and
solid/liquid 1loop. State feedback controllers may be successfully
designed to globally stablize the system about a variety of operating

behaviors.



116

7. REFERENCES

Averner, M. An Approach to the Mathematical Modelling of a Con-

trolled Ecological Life Support System. Washington D.C.: NASA (NASA

CR-166331), 1981.

Babcock, P.S., D.M. Auslander, and R.C. Spear. "Dynamic Considera-

tions for Control of Closed Life Support Systems". Proceedings of

the 25th Annual Meeting of the Committee on Space Research

(COSPAR), Graz, Austria, July, 1984, (To be published).

Franklin, G.F., and J.D. Powell. Digital Control of Dynamic Sys-

tems., Reading, MA: Addison-Wesley, 1980.

Guckenheimer, J., and P. Holmes. Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fijelds. New York: Springer-

Verlag, 1983.

Gustan, E, and T. Vinopal. Controlled Ecological Life Support Sys-

tem: Transportation Analysis. Moffett Field, CA: NASA Ames

Research Center (NASA CR-166420), 1982.

Hammersley, J.M., and D.C. Handscomb. Monte Carlo Methods. New

York: Wiley & Sons, 1964,

Hunt, L.R., R. Su., and G. Meyer. "Global Transformation of Non-

linear Systems". IEEE Transaction on Automatic Control. vol. 27,




9.

10.

11,

12,

13.

14,

15,

17

1982,

Incropera, F. "Leaf Photosynthesis: The Influence of Environmental

Variables". Journal of Environmental Quality. Vol.l4, No.4., 1975.

Jordan, D.W, and P. Smith., Nonlinear Ordinary Differential Equa-

tions. Oxford: Clarendon Press, 1979.

Lichtenberg, A.J. and M.A., Lieberman. Regular and Stochastie

Motion. New York: Springer-Verlag, 1983.

Modell, M. and J. Spurlock. "Closed-Ecology Life Support Systems

(CELSS) For Long-Duration, Manned Missions". American Society of

Mechanical Engineering. Paper 79-ENAs-27, 1979.

Rubenstein, R.Y. Simulation and the Monte Carlo Method. New York:

Wiley & Sons, 1981,

Salisbury, F. and C. Ross. Plant Physiology. Belmont, CA: Wads-

worth, Ine., 1979.

Sparrow, C. The Lorenz Equations: Bifurcations, Chaos, and Strange

Attractors. New York: Springer-Verlag, 1983.

Stahr, J., D.M. Auslander, R.C. Spear, and G. Young. An Approach to

the Preliminary Evaluation of Closed Ecological Life Support System

(CELSS) Scenarios and Control Strategies. Moffett Field, CA: NASA




16.

17.

18.

118

Ames Research Center (NASA CR-166368), 1982.

Su., R., G. Meyer, and L.R. Hunt. "Robustness in Nonlinear Con-

trol". in Differential Geometriec Control Theory. Boston: Bir-

khauser, 1983.

Takahashi, Y., M.J. Rabins, and D.M. Auslander. Control and

Dynamic Systems. Reading, MA: Addison-Wesley, 1972.

Young, G.E. A Design Methodology for Nonlinear Systems Containing

Parameter Uncertainty: Application to Nonlinear Controller Design.

Berkeley: University of California, Dissertation, 1982,




10.

11.

12.

13.

14.

15.

16.

APPENDIX A:
CELSS Documents Published as NASA Reports

Johnson, Emmett J.: Genetic Engineering Possibilities for CELSS: A Bibliography and
Summary of Techniques. NASA CR-166306, March 1982.

Hornberger, G.M. and Rastetter, E.B.: Sensitivity Analysis as an Aid in Modelling and
Control of (Poorly-Defined) Ecological Systems. NASA CR-166308, March 1982.

Tibbitts, T.W. and Alford, D.K.: Controlled Ecological life Support System: Use of Higher
Plants. NASA CP-2231, May 1982.

Mason, R.M. and Carden, J.L.: Controlled Ecological Life Support System: Research and
Development Guidelines. NASA CP-2232, May 1982.

Moore, B. and MacElroy, R.D.: Controlled Ecological Life Support System: Biological Prob-
lems. NASA CP-2233, May 1982.

Aroeste, H.: Application of Guided Inquiry System Technique (GIST) to Controlled Eco-
logical Life Support Systems (CELSS). NASA CR-166312, January 1982.

Mason, R.M.: CELSS Scenario Analysis: Breakeven Calculation. NASA CR-166319, April
1980.

Hoff. J.E.. Howe. J.M. and Mitchell, C.A.: Nutritional and Cultural Aspects of Plant Species
Selection for a Controlled Ecological Life Support System. NASA CR-166324, March 1982.

Averner, M.: An Approach to the Mathematical Modelling of a Controlled Ecological Life
Support System. NASA CR-166331, August 1981.

Maguire, B.: Literature Review of Human Carried Microbes’ Interaction with Plants. NASA
CR-166330, August 1980.

Howe, J.M. and Hoff, J.E.: Plant Diversity to Support Humans in a CELSS Ground-Based
Demonstrator. NASA CR-166357, June 1982.

Young, G.: A Design Methodology for Nonlinear Systems Containing Parameter Uncer-
tainty: Application to Nonlinear Controller Design. NASA CR-166358, May 1982.

Karel, M.: Evaluation of Engineering Foods for Controlled Ecological Life Support Systems
(CELSS). NASA CR-166359, June 1982.

Stahr, J.D., Auslander, D.M., Spear, R.C. and Young, G.E.: An Approach to the Prelimi-
nary Evaluation of Closed-Ecological Life Support System (CELSS) Scenarios and Control
Strategies. NASA CR-166368, July 1982.

Radmer, R., Ollinger, O., Venables, A. and Fernandez, E.: Algal Culture Studies Related
to a Closed Ecological Life Support System (CELSS). NASA CR-166375, July 1982.

Auslander, D.M., Spear, R.C. and Young, G.E.: Application of Control Theory to Dynamic
Systems Simulation. NASA CR-166383, August 1982.

119



17.

18.

19.

20.

21,

22.

23.

24.

25.

26.

21.

28.

29.

30.

31.

32.

33.

Fong, F. and Funkhouser, E.A.: Air Pollutant Production by Algal Cell Cultures. NASA
CR-166384, August 1982.

Ballou, E. V.. Mineral Separation and Recycle in a Controlled Ecological Life Support
System (CELSS). NASA CR-166388, March 1982.

Moore, B., lll, Wharton, R. A., Jr., and MacElroy, R.D.: Controlled Ecological Life Support
System: First Principal Investigators Meeting. NASA CP-2247, December 1982.

Carden, J. L. and Browner, R.: Preparation and Analysis of Standardized Waste Samples
for Controlled Ecological Life Support Systems (CELSS). NASA CR-166392, August 1982.

Huffaker, R. C., Rains, D. W. and Qualset, C. O.: Utilization of Urea, Ammonia, Nitrite,
and Nitrate by Crop Plants in a Controlled Ecological Life Support System (CELSS).
NASA-CR 166417, October 1982.

Gustan, E. and Vinopal, T.: Controlled Ecological Life Support System: Transportation
Analysis. NASA CR-166420, November 1982.

Raper, C. David, Jr.: Plant Growth in Controlled Environments in Response to Character-
istics of Nutrient Solutions. NASA CR-166431, November 1982.

Wydeven, T.: Composition and Analysis of a Model Waste for a CELSS. NASA Technical
Memorandum 84368, September 1983.

Averner, M., Karel, M., and Radmer, R.: Problems Associated with the use of Algae in
Bioregenerative Life Support Systems. NASA CR-166615, November 1984.

Radmer, R., Behrens, P., Fernandez, E., Ollinger, O., Howell, C., Venables, A., Huggins, D.
and Gladue, R.: Algal Culture Studies Related to a Closed Ecological Life Support System
(CELSS). NASA CR-177322, October 1984.

Wheeler, R. and Tibbitts, T.: Controlled Ecological Life Support System: Higher Plant
Flight Experiments. NASA CR-177323, November 1984.

Auslander, D., Spear, R., Babcock, P. and Nadel, M.: Control and Modeling of a CELSS
(Controlled Ecological Life Support System). NASA CR-177324, November 1984.

Karel, M. and Kamarei, A.R.: Feasibility of Producing a Range of Food Products from a
Limited Range of Undifferentiated Major Food Components. NASA CR-177329, April 1984.

MacElroy, R.D.. Smernoff, D.T., and Klein, H.: Life Support Systems in Space Travel.
(Topical Session of XXVth COSPAR meeting. Graz. Austria) NASA CP-2378, May 1985.

MacElroy, R.D.. Martello, N.V., Smernoff, D.T.: Controlled Ecological Life Support Sys-
tems: CELSS "85 Workshop, NASA TM-88215, January 1986.

Tibbitts, T.W.:Controlled Environment Life Support System: Calcium-Related Leaf Injuries
on Plants. NASA CR-177399, March 1986.

Tibbitts, T.W., Wheeler, R.M.: Controlled Environment Life Support System: Growth
Studies with Potatoes, NASA CR-177400, March 1986.

120




1. Report No. 2. Government Accassion No. 3. Recipient’s Catalog No.
NASA CR-177401

4, Title and Subtitie 5. Report Date
Nonlinear System Controller Design Based on Domain of | March 1986
JAttraction: An Application fo CELSS Analysis and 6. Performing Organization Code
Control SLX
7. Author(s) 8. Performing Organization Report No.

P.S. Babcock, IV 34

10. Work Unit No.

9, Performing Organization Name and Address
Department of Mechanical Engineering T 4081

University of California - Berkeley 11. Contract or Grant No.
Berkeley, CA 94720 NCC 2-67

13. Type of Report and Period Covered
Contractor Report

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration 14 Sponsoring Agency Code

Washington, D.C. 24056 199-61-12

15. Supplementary Notes

Robert D. MacElroy, NASA Ames Research Center

Point of Contact: MS 239-4, Moffett Field, CA 94035
415-694-5573 or FTS 8-464-5573

16. Abstract

A technique for analyzing and designing controllers for nonlinear systems based on measures of the
domain of attraction is presented. These methods are particularly suited to investigating Closed Ecological
Life Support Systems (CELSS) models. In particular, the dynamic consequences of changes in the waste
storage capacity and system mass, and how information is used for control in CELSS models are examined.
The models’ high dimensionality and nonlinear state equations make them difficult to analyze by any other
technique. The domain of attraction is the region of initial conditions that tend toward an attractor and it is
delineated by randomly selecting initial conditions from the region of state space being investigated. Error
determinations are found by repeating the domain simulations with independent samples. A refinement of
this region is the domain of performance which is the region of initial conditions that meet a performance
criteria. In nonlinear systems, local stability does not insure stability over a larger region. The domain of
attraction marks out this stability region; hence, it can be considered a measure of a nonlinear system’s
ability to recover from state perturbations. When considering random perturbations, the minimum radius of
the domain is a measure of the magnitude of perturbations for which recovery is guaranteed. An advantage
of this measure is that it is a vector length and, therefore, is applicable to systems with any dimension.
The use the domains of attraction and performance are demonstrated in controller design for an inverted
pendulum. This global design technique is contrasted with more traditional, local design methods. Design
of both linear and nonlinear controllers are shown. Three CELSS models, with 9 to 30 state variable, are
presented. Measures of the domain of attraction are used to show the global behavior of these models under.
a variety of design and controller scenarios. It is shown that all of the models have stable equilibria that
bifurcate, then reverse bifurcate as the waste storage capacity increases. High-dimension models also show
limit cycle and chaotic trajectories. .
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